Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Opt Lett ; 49(10): 2817-2820, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748169

RESUMEN

Alteration in the elastic properties of biological tissues may indicate changes in the structure and components. Acoustic radiation force optical coherence elastography (ARF-OCE) can assess the elastic properties of the ocular tissues non-invasively. However, coupling the ultrasound beam and the optical beam remains challenging. In this Letter, we proposed an OCE method incorporating homolateral parallel ARF excitation for measuring the elasticity of the ocular tissues. An acoustic-optic coupling unit was established to reflect the ultrasound beam while transmitting the light beam. The ARF excited the ocular tissue in the direction parallel to the light beam from the same side of the light beam. We demonstrated the method on the agar phantoms, the porcine cornea, and the porcine retina. The results show that the ARF-OCE method can measure the elasticity of the cornea and the retina, resulting in higher detection sensitivity and a more extensive scanning range.


Asunto(s)
Córnea , Diagnóstico por Imagen de Elasticidad , Fantasmas de Imagen , Tomografía de Coherencia Óptica , Diagnóstico por Imagen de Elasticidad/métodos , Animales , Porcinos , Córnea/diagnóstico por imagen , Córnea/fisiología , Tomografía de Coherencia Óptica/métodos , Elasticidad , Retina/diagnóstico por imagen , Retina/fisiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38714620

RESUMEN

The safety of human health and agricultural production depends on the quality of farmland soil. Risk assessment of heavy metal pollution sources could effectively reduce the hazard of soil pollution from various sources. This study has identified and quantitatively analyzed pollution sources with geostatistical analysis and the APCS-MLR model. The potential ecological risk index was combined with the APCS-MLR model which has quantitatively calculated the source contribution. The results revealed that As, Cr, Cd, Pb, Zn, and Cu were enriched in soil. Geostatistical analysis and the APCS-MLR model have apportioned four pollution sources. The Mn and Ni were attributed to natural sources; As and Cr were from agricultural activities; Cu and Zn were originated from natural sources; Cd and Pb were derived from atmospheric deposition. Atmospheric deposition and agricultural activities were the largest contributors to ecological risk of heavy metals in soil, which accounted for 56.21% and 36.01% respectively. Atmospheric deposition and agricultural activities are classified as priority sources of pollution. The combination of source analysis receptor model and risk assessment is an effective method to quantify source contribution. This study has quantified the ecological risks of soil heavy metals from different sources, which will provide a reliable method for the identification of primary harmfulness sources of pollution for future studies.

3.
Adv Mater ; : e2401315, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627335

RESUMEN

The integration of advanced functions and diverse practical applications calls for multifunctional liquid crystal elastomers (LCEs); however, the structure-intrinsic luminescence and excellent mechanical properties of LCEs have not yet been explored. In this study, clusteroluminescence (CL)-based LCEs (CL-LCEs) are successfully fabricated without depending on large conjugated structures, thereby avoiding redundant organic synthesis and aggregation-caused quenching. The experimental and theoretical results reveal that secondary amine (-NH-) and imine (-C = N-) groups play vital roles in determining the presence of fluorescence in CL-LCEs. Based on the above observation, the strategy universalization and a molecular library for constructing CL-LCEs are further demonstrated. Meanwhile, the dynamic bond of imine bonds endows the CL-LCE system with rapid self-healing under mild conditions (70 °C in 10 min), excellent stretchability, and adaptive programmable characteristics. Furthermore, the self-luminescent performance enables visual detection of the self-healing process. Finally, CL-based information storage and anticounterfeiting are successfully realized and their applications in fiber actuators and fluorescent textiles are demonstrated. The distinctive luminescence and dynamic chemistry presented in this work has significant implications in elucidating the mechanism of CL and providing new strategies for the rational design of novel multifunctional LCE materials.

4.
World J Gastrointest Oncol ; 16(2): 364-371, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38425386

RESUMEN

BACKGROUND: According to clinical data, a significant percentage of patients experience pain after surgery, highlighting the importance of alleviating postoperative pain. The current approach involves intravenous self-control analgesia, often utilizing opioid analgesics such as morphine, sufentanil, and fentanyl. Surgery for colorectal cancer typically involves general anesthesia. Therefore, optimizing anesthetic management and postoperative analgesic programs can effectively reduce perioperative stress and enhance postoperative recovery. The study aims to analyze the impact of different anesthesia modalities with multimodal analgesia on patients' postoperative pain. AIM: To explore the effects of different anesthesia methods coupled with multi-mode analgesia on postoperative pain in patients with colorectal cancer. METHODS: Following the inclusion criteria and exclusion criteria, a total of 126 patients with colorectal cancer admitted to our hospital from January 2020 to December 2022 were included, of which 63 received general anesthesia coupled with multi-mode labor pain and were set as the control group, and 63 received general anesthesia associated with epidural anesthesia coupled with multi-mode labor pain and were set as the research group. After data collection, the effects of postoperative analgesia, sedation, and recovery were compared. RESULTS: Compared to the control group, the research group had shorter recovery times for orientation, extubation, eye-opening, and spontaneous respiration (P < 0.05). The research group also showed lower Visual analog scale scores at 24 h and 48 h, higher Ramany scores at 6 h and 12 h, and improved cognitive function at 24 h, 48 h, and 72 h (P < 0.05). Additionally, interleukin-6 and interleukin-10 levels were significantly reduced at various time points in the research group compared to the control group (P < 0.05). Levels of CD3+, CD4+, and CD4+/CD8+ were also lower in the research group at multiple time points (P < 0.05). CONCLUSION: For patients with colorectal cancer, general anesthesia coupled with epidural anesthesia and multi-mode analgesia can achieve better postoperative analgesia and sedation effects, promote postoperative rehabilitation of patients, improve inflammatory stress and immune status, and have higher safety.

5.
Front Immunol ; 15: 1336586, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504987

RESUMEN

Introduction: Sepsis represents a critical medical condition that arises due to an imbalanced host reaction to infection. Central to its pathophysiology are cytokines. However, observational investigations that explore the interrelationships between circulating cytokines and susceptibility to sepsis frequently encounter challenges pertaining to confounding variables and reverse causality. Methods: To elucidate the potential causal impact of cytokines on the risk of sepsis, we conducted two-sample Mendelian randomization (MR) analyses. Genetic instruments tied to circulating cytokine concentrations were sourced from genome-wide association studies encompassing 8,293 Finnish participants. We then evaluated their links with sepsis and related outcomes using summary-level data acquired from the UK Biobank, a vast multicenter cohort study involving over 500,000 European participants. Specifically, our data spanned 11,643 sepsis cases and 474,841 controls, with subsets including specific age groups, 28-day mortality, and ICU-related outcomes. Results and Discussion: MR insights intimated that reduced genetically-predicted interleukin-10 (IL-10) levels causally correlated with a heightened sepsis risk (odds ratio [OR] 0.68, 95% confidence interval [CI] 0.52-0.90, P=0.006). An inverse relationship emerged between monocyte chemoattractant protein-1 (MCP-1) and sepsis-induced mortality. Conversely, elevated macrophage inflammatory protein 1 beta (MIP1B) concentrations were positively linked with both sepsis incidence and associated mortality. These revelations underscore the causal impact of certain circulating cytokines on sepsis susceptibility and its prognosis, hinting at the therapeutic potential of modulating these cytokine levels. Additional research is essential to corroborate these connections.


Asunto(s)
Citocinas , Sepsis , Humanos , Estudios de Cohortes , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Sepsis/genética
6.
Arch Med Sci ; 20(1): 61-70, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414456

RESUMEN

Introduction: Acute pancreatitis (AP) is a prevalent inflammatory disease that can lead to severe abdominal pain and multiple organ failure, potentially resulting in pancreatic necrosis and persistent dysfunction. A nomogram prediction model was developed to accurately evaluate the prognosis and provide therapy guidance to AP patients. Material and methods: Retrospective data extraction was performed using MIMIC-IV, an open-source clinical database, to obtain 1344 AP patient records, of which the primary dataset included 1030 patients after the removal of repeated hospitalizations. The prediction of in-hospital mortality (IHM) used the least absolute shrinkage and selection operator (LASSO) regression model to optimize feature selection. A multivariate logistic regression analysis was used to build a prediction model incorporating the selected features, and the C-index, calibration plot, and decision curve analysis (DCA) were utilized to evaluate the discrimination, calibration, and clinical applicability of the prediction model. Results: The nomogram utilized a combination of indicators, including the SAPS II score, RDW, MBP, RR, PTT, and fluid-electrolyte disorders. Impressively, the model exhibited a satisfactory diagnostic performance, with area under the curve values of 0.892 and 0.856 for the training cohort and internal validation, respectively. Moreover, the calibration plots and the Hosmer-Lemeshow goodness-of-fit (HL) test revealed a strong correlation between the predicted and actual outcomes (p = 0.73), further confirming the reliability of our model. Notably, the results of the decision curve analysis (DCA) highlighted the superiority of our model over previously described scoring methods in terms of net clinical benefit, solidifying its value in clinical applications. Conclusions: Our novel nomogram is a simple tool for accurately predicting IHM in ICU patients with AP. Treatment methods that enhance the factors involved in the model may contribute to increased in-hospital survival for these ICU patients.

7.
BMC Genomics ; 25(1): 83, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245685

RESUMEN

BACKGROUND: Protein phosphatases type 2C (PP2C) are heavily involved in plant growth and development, hormone-related signaling pathways and the response of various biotic and abiotic stresses. However, a comprehensive report identifying the genome-scale of PP2C gene family in ginger is yet to be published. RESULTS: In this study, 97 ZoPP2C genes were identified based on the ginger genome. These genes were classified into 15 branches (A-O) according to the phylogenetic analysis and distributed unevenly on 11 ginger chromosomes. The proteins mainly functioned in the nucleus. Similar motif patterns and exon/intron arrangement structures were identified in the same subfamily of ZoPP2Cs. Collinearity analysis indicated that ZoPP2Cs had 33 pairs of fragment duplicated events uniformly distributed on the corresponding chromosomes. Furthermore, ZoPP2Cs showed greater evolutionary proximity to banana's PP2Cs. The forecast of cis-regulatory elements and transcription factor binding sites demonstrated that ZoPP2Cs participate in ginger growth, development, and responses to hormones and stresses. ZoERFs have plenty of binding sites of ZoPP2Cs, suggesting a potential synergistic contribution between ZoERFs and ZoPP2Cs towards regulating growth/development and adverse conditions. The protein-protein interaction network displayed that five ZoPP2Cs (9/23/26/49/92) proteins have robust interaction relationship and potential function as hub proteins. Furthermore, the RNA-Seq and qRT-PCR analyses have shown that ZoPP2Cs exhibit various expression patterns during ginger maturation and responses to environmental stresses such as chilling, drought, flooding, salt, and Fusarium solani. Notably, exogenous application of melatonin led to notable up-regulation of ZoPP2Cs (17/59/11/72/43) under chilling stress. CONCLUSIONS: Taken together, our investigation provides significant insights of the ginger PP2C gene family and establishes the groundwork for its functional validation and genetic engineering applications.


Asunto(s)
Zingiber officinale , Zingiber officinale/genética , Filogenia , Perfilación de la Expresión Génica , Fosfoproteínas Fosfatasas/genética , Genoma de Planta , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Waste Manag ; 175: 294-304, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38237405

RESUMEN

Exposure to high levels of microbial contaminants during waste disposal leads to the development of various diseases, including respiratory symptoms and gastrointestinal infections. In this study, the emissions of airborne bacteria and fungi during the process of sludge bio-drying were investigated. The recorded emission levels of airborne bacteria and fungi were 2398 ± 1307 CFU/m3 and 1963 ± 468 CFU/m3, respectively. Viable bacteria were sized between 1.1 and 3.3 µm, while fungal particles were concentrated between 2.1 and 4.7 µm. High-throughput sequencing was used to conduct a microbial population assay, and correlation analysis was performed to estimate the relationship between key factors and bioaerosol emissions. The main bacteria identified were Bacillus sp., Lysinibacillus sp. YS11, unclassified Enterobacteriaceae, Brevundimonas olei, and Achromobacter sp.; the primary types of fungi were Aspergillus ochraceus, Gibberella intricans, Fusarium concentricum, Aspergillus qinqixianii, and Alternaria sp.; and the dominant opportunistic pathogens were Bacillus anthracis and Aspergillus ochraceus. At lower moisture and temperature levels, airborne bacterial concentrations were higher, especially the release of fine particles. In addition, moisture content had a significant impact on the microbial population in bioaerosols. This study provides insights into strategies for controlling bioaerosols in the exhaust gases of the sludge bio-drying process.


Asunto(s)
Bacillus , Aguas del Alcantarillado , Microbiología del Aire , Bacterias , Aerosoles/análisis , Hongos , Monitoreo del Ambiente
9.
Sci Total Environ ; 912: 168817, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38029984

RESUMEN

Biological deodorization systems are widely used to control odors and volatile organic compounds. However, the secondary contamination of bioaerosol emissions is a noteworthy issue in the operation of biofilters for off-gas purification. In this study, a multistage biofilter for benzene treatment was utilized to investigate the bioaerosol emissions under different flow rates and spray intervals. At the outlet of the biofilter, 99-7173 CFU/m3 of bioaerosols were detected, among which pathogens accounted for 8.93-98.73 %. Proteobacteria and Firmicutes dominated bioaerosols at the phylum level. The Mantel test based on the Bray-Curtis distance revealed strong influences of flow rate introduced to the biofilter and biomass colonized on the packing materials (PMs) on bioaerosol emissions. The non-metric multidimensional scaling results suggested a correlation between the bioaerosol community and bacteria on the PMs. Bacillus and Stenotrophomonas were the two main genera stripped from the biofilm on PMs to form the bioaerosols. SourceTracker analysis confirmed that microorganisms from the PMs near outlet contributed an average of 22.3 % to bioaerosols. Pathogenic bacteria carried by bioaerosols included Bacillus, Serratia, Stenotrophomonas, Achromobacter, Enterococcus, and Pseudomonas. Bioaerosols were predicted to cause human diseases, with antimicrobial drug resistance and bacterial infectious disease being the two main pathogenic pathways. Stenotrophomonas sp. LMG 19833, Pseudomonas sp., and Stenotrophomonas sp. were the keystone species in the bioaerosol co-occurrence network. Overall, results of present study promote the insight of bioaerosols, particularly pathogen emissions, and provide a basis for controlling bioaerosol contamination from biofilters.


Asunto(s)
Bacillus , Gases , Humanos , Gases/análisis , Benceno/metabolismo , Virulencia , Bacterias/metabolismo , Aerosoles/análisis , Microbiología del Aire
10.
Environ Sci Pollut Res Int ; 30(52): 112813-112824, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37845595

RESUMEN

Heavy metal contamination to soil is tricky due to its difficult removal, long retention time, and biomagnified toxicity. The green and low-cost phytoremediation with electric field treatment and planting pattern selection is an emerging and more effective approach to remove heavy metals from soils. In this study, alternating current (AC) electric field-assisted phytoremediation was examined with different planting patterns, i.e., monoculture willow (Salix sp.), monoculture Sedum alfredii Hance, and interplanting of willow and S. alfredii. AC electric field greatly increased phytoremediation efficiency to soil cadmium (Cd) regardless of planting patterns, either single plant species of willow or S. alfredii. The Cd removal capacity of willow and S. alfredii raises apparently under 0.5 V cm-1 AC electric field. Under different planting patterns of AC electric field treatment, Cd accumulation in the whole plant by interplanting was 5.63 times higher than monoculture willow, but only 0.75 times as high as monoculture S. alfredii. The results showed that AC electric field-assisted interplanting of willow and S. alfredii is a promising remediation technique for efficiently clean-up Cd-contaminated soil.


Asunto(s)
Metales Pesados , Salix , Sedum , Contaminantes del Suelo , Cadmio/análisis , Biodegradación Ambiental , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Suelo
11.
Nat Commun ; 14(1): 6906, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903772

RESUMEN

Remote meta selective C-H functionalization of aromatic compounds remains a challenging problem in chemical synthesis. Here, we report an iridium catalyst bearing a bidentate pyridine-pyridone (PY-PYRI) ligand framework that efficiently catalyzes this meta selective borylation reaction. We demonstrate that the developed concept can be employed to introduce a boron functionality at the remote meta position of phenols, phenol containing bioactive and drug molecules, which was an extraordinary challenge. Moreover, we have demonstrated that the method can also be applied for the remote C6 borylation of indole derivatives including tryptophan that was the key synthetic precursor for the total synthesis of Verruculogen and Fumitremorgin A alkaloids. The inspiration of this catalytic concept was started from the O-Si secondary interaction, which by means of several more detailed control experiments and detailed computational investigations revealed that an unprecedented Bpin shift occurs during the transformation of iridium bis(boryl) complex to iridium tris(boryl) complex, which eventually control the remote meta selectivity by means of the dispersion between the designed ligand and steering silane group.

12.
J Biophotonics ; 16(12): e202300292, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37774137

RESUMEN

The biomechanical characterization of the tissues provides significant evidence for determining the pathological status and assessing the disease treatment. Incorporating elastography with optical coherence tomography (OCT), optical coherence elastography (OCE) can map the spatial elasticity distribution of biological tissue with high resolution. After the excitation with the external or inherent force, the tissue response of the deformation or vibration is detected by OCT imaging. The elastogram is assessed by stress-strain analysis, vibration amplitude measurements, and quantification of elastic wave velocities. OCE has been used for elasticity measurements in ophthalmology, endoscopy, and oncology, improving the precision of diagnosis and treatment of disease. In this article, we review the OCE methods for biomechanical characterization and summarize current OCE applications in biomedicine. The limitations and future development of OCE are also discussed during its translation to the clinic.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Diagnóstico por Imagen de Elasticidad/métodos , Tomografía de Coherencia Óptica/métodos , Fenómenos Mecánicos , Vibración , Fenómenos Biomecánicos
13.
Plant Physiol Biochem ; 201: 107799, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37271022

RESUMEN

Storing postharvest ginger at low temperatures can extend its shelf life, but can also lead to chilling injury, loss of flavor, and excessive water loss. To investigate the effects of chilling stress on ginger quality, morphological, physiological, and transcriptomic changes were examined after storage at 26 °C, 10 °C, and 2 °C for 24 h. Compared to 26 °C and 10 °C, storage at 2 °C significantly increased the concentrations of lignin, soluble sugar, flavonoids, and phenolics, as well as the accumulation of H2O2, O2-, and thiobarbituric acid reactive substances (TBARS). Additionally, chilling stress inhibited the levels of indoleacetic acid, while enhancing gibberellin, abscisic acid, and jasmonic acid, which may have increased postharvest ginger's adaptation to chilling. Storage at 10 °C decreased lignin concentration and oxidative damage, and induced less fluctuant changes in enzymes and hormones than storage at 2 °C. RNA-seq revealed that the number of differentially expressed genes (DEGs) increased with decreasing temperature. Functional enrichment analysis of the 523 DEGs that exhibited similar expression patterns between all treatments indicated that they were primarily enriched in phytohormone signaling, biosynthesis of secondary metabolites, and cold-associated MAPK signaling pathways. Key enzymes related to 6-gingerol and curcumin biosynthesis were downregulated at 2 °C, suggesting that cold storage may negatively impact ginger quality. Additionally, 2 °C activated the MKK4/5-MPK3/6-related protein kinase pathway, indicating that chilling may increase the risk of ginger pathogenesis.


Asunto(s)
Transcriptoma , Zingiber officinale , Zingiber officinale/genética , Peróxido de Hidrógeno , Lignina , Hormonas
14.
Comput Biol Med ; 163: 107180, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37343470

RESUMEN

Fiber transport and deposition in the complete respiratory airway is of great significance for human health risk assessment. Thus far, the literature has mainly focused on limited branches of the upper airway and assumes spherical particles by neglecting fiber anisotropy. To fill the gap, this paper utilized an extended realistic respiratory airway from the nasal cavity to the distal bronchial tracts, up to the 15th generation. Fibers with aerodynamic diameters from 2 to 12 µm and aspect ratios of 1, 10, and 50 were released at the inlet of the respiratory airway model, and the coupled translational and rotational motion were computed. Overall and regional fiber deposition fractions, including the nasal cavities, laryngeal airway, and lungs were predicted and compared with earlier numerical results. The study also investigated: 1) secondary flow and distributions of the fibers at the lower respiratory airway entrance; 2) upstream conditions toward fiber deposition efficiencies; 3) fiber deposition patterns and detailed deposition fractions in the five lobes. Utilizing the realistic fiber transport model, the current study found that the upstream airway geometry and the flow condition have a significant impact on the fiber transport and deposition in the downstream airway regions. The fiber depositions in the lower and middle lobes are sensitive to the fiber aerodynamic diameter, but insensitive in the upper lobes. This study expects to generate innovative knowledge on the unique fiber motion characteristics toward potential inhalation health risks.


Asunto(s)
Pulmón , Modelos Biológicos , Humanos , Tamaño de la Partícula , Tráquea , Administración por Inhalación , Simulación por Computador
15.
Commun Med (Lond) ; 3(1): 91, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353603

RESUMEN

BACKGROUND: Point-of-care diagnostic devices, such as lateral-flow assays, are becoming widely used by the public. However, efforts to ensure correct assay operation and result interpretation rely on hardware that cannot be easily scaled or image processing approaches requiring large training datasets, necessitating large numbers of tests and expert labeling with validated specimens for every new test kit format. METHODS: We developed a software architecture called AutoAdapt POC that integrates automated membrane extraction, self-supervised learning, and few-shot learning to automate the interpretation of POC diagnostic tests using smartphone cameras in a scalable manner. A base model pre-trained on a single LFA kit is adapted to five different COVID-19 tests (three antigen, two antibody) using just 20 labeled images. RESULTS: Here we show AutoAdapt POC to yield 99% to 100% accuracy over 726 tests (350 positive, 376 negative). In a COVID-19 drive-through study with 74 untrained users self-testing, 98% found image collection easy, and the rapidly adapted models achieved classification accuracies of 100% on both COVID-19 antigen and antibody test kits. Compared with traditional visual interpretation on 105 test kit results, the algorithm correctly identified 100% of images; without a false negative as interpreted by experts. Finally, compared to a traditional convolutional neural network trained on an HIV test kit, the algorithm showed high accuracy while requiring only 1/50th of the training images. CONCLUSIONS: The study demonstrates how rapid domain adaptation in machine learning can provide quality assurance, linkage to care, and public health tracking for untrained users across diverse POC diagnostic tests.


It can be difficult to correctly interpret the results of rapid diagnostic tests that give a visual readout, such as COVID rapid tests. We developed a computational algorithm to interpret rapid test results using an image taken by a smartphone camera. This algorithm can easily be adapted for use on results from different test kits. The algorithm was accurate at interpreting results obtained by members of the public using various COVID rapid tests and diagnostic tests with similar outputs used for other infections. The use of this algorithm should enable accurate interpretation of rapid diagnostic tests by members of the public and hence enable improved medical care.

16.
Int Immunopharmacol ; 119: 110211, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37156032

RESUMEN

Osteoarthritis (OA), which is a major cause of serious arthralgia and disability among the elderly, has long plagued numerous populations. However, the specific molecular mechanisms involved in the etiology of OA are unclear. SIRT6 plays a critical function in the development of several inflammatory and aging-associated diseases. A study by D'Onofrio demonstrates that ergothioneine (EGT) is an effective activator of SIRT6. As revealed by previous reports, EGT exerts beneficial effects on the mouse body, including resistance to oxidation, tumor, and inflammation. Therefore, this work attempted to identify the inflammatory resistance of EGT and explore its effects on the incidence and development of OA. Mouse chondrocyte stimulation using varying levels of EGT and 10 ng/mL IL-1ß. According to in vitro experiments, EGT significantly reduced the decomposition of collagen II and aggrecan in OA chondrocytes, as well as inhibited the overexpression of PGE2, NO, IL-6, TNF-α, iNOs, COX-2, MMP-13, and ADAMTS5. In the present work, EGT hindered the NF-κB activity by activating the SIRT6 pathway in OA chondrocytes, which in turn, significantly attenuated the inflammatory response resulting from IL to 1ß. The inhibitory effect of EGT on the progression of OA was demonstrated by the mouse DMM model experiment. Thus, this study revealed that EGT was effective in anti-OA treatment.


Asunto(s)
Ergotioneína , Osteoartritis , Sirtuinas , Animales , Ratones , Células Cultivadas , Condrocitos , Modelos Animales de Enfermedad , Ergotioneína/uso terapéutico , Inflamación/metabolismo , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Sirtuinas/metabolismo
17.
Ecotoxicol Environ Saf ; 259: 115044, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37216863

RESUMEN

Potentially toxic elements (PTEs) in cultivated lands pose serious threats to the environment and human health. Therefore, improving the understanding of their distinct sources and environmental risks by integrating various methods is necessary. This study investigated the distribution, sources, and environmental risks of eight PTEs in cultivated soils in Lishui City, eastern China, using digital soil mapping, positive matrix factorisation (PMF), isotopic tracing, and Monte Carlo simulation. The results showed that Pb and Cd are the main pollutants, which posed higher ecological risks in the study area than the other PTEs. Natural, mining, traffic, and agricultural sources were identified as the four determinants of PTE accumulation via a PMF model combined with Pearson correlation analysis, showing that their contribution rates were 22.6 %, 45.7 %, 15.2 %, and 16.5 %, respectively. Stable isotope analysis further confirmed that local mining activities affected the HM accumulation. Additionally, non-carcinogenic and carcinogenic risk values for children were 3.18 % and 3.75 %, respectively, exceeding their acceptable levels. We also identified that mining activities were the most important sources of human health risks (55.7 % for adults and 58.6 % for children) via Monte Carlo simulations coupled with the PMF model. Overall, this study provides insights into the PTE pollution management and health risk control in cultivated soils.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Niño , Adulto , Humanos , Suelo , Metales Pesados/análisis , Monitoreo del Ambiente/métodos , Método de Montecarlo , Contaminantes del Suelo/análisis , Medición de Riesgo/métodos , China
18.
Toxics ; 11(3)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36977026

RESUMEN

Soil acidification in tea plantations leads to an excessive heavy metal content in tea, decreasing its yield and quality. How to apply shellfish and organic fertilizers to improve soil and ensure the safe production of tea is still not clear. A two-year field experiment was conducted in tea plantations in which the soil was characterized by a pH of 4.16 and concentrations of lead (Pb) (85.28 mg/kg) and cadmium (Cd) (0.43 mg/kg) exceeding the standard. We used shellfish amendments (750, 1500, 2250 kg/ha) and organic fertilizers (3750, 7500 kg/ha) to amend the soils. The experimental results showed that compared with the treatment without any amendment (CK), the soil pH increased by 0.46 on average; the soil available nitrogen, phosphorus, and potassium contents increased by 21.68%, 19.01%, and 17.51% respectively; and the soil available Pb, Cd, Cr, and As contents decreased by 24.64%, 24.36%, 20.83%, and 26.39%, respectively. In comparison to CK, the average yield of tea also increased by 90.94 kg/ha; tea polyphenols, free amino acids, caffeine, and water extract increased by 9.17%, 15.71%, 7.54%, and 5.27%, respectively; and the contents of Pb, Cd, As, and Cr in the tea decreased significantly (p < 0.05) by 29.44-61.38%, 21.43-61.38%, 10.43-25.22%, and 10.00-33.33%, respectively. The greatest effects on all parameters occurred with the largest amendment of both shellfish (2250 kg/ha) and organic fertilizer (7500 kg/ha) combined. This finding suggests that the optimized amendment of shellfish could be used as a technical measure to improve the health quality of both soil and tea in acidified tea plantations in the future.

19.
Toxics ; 11(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36977030

RESUMEN

The identification of the source of heavy metal pollution and its quantification are the prerequisite of soil pollution control. The APCS-MLR, UNMIX and PMF models were employed to apportion pollution sources of Cu, Zn, Pb, Cd, Cr and Ni of the farmland soil in the vicinity of an abandoned iron and steel plant. The sources, contribution rates and applicability of the models were evaluated. The potential ecological risk index revealed greatest ecological risk from Cd. The results of source apportionment illustrated that the APCS-MLR and UNMIX models could verify each other for accurate allocation of pollution sources. The industrial sources were the main sources of pollution (32.41~38.42%), followed by agricultural sources (29.35~31.65%) and traffic emission sources (21.03~21.51%); and the smallest proportion was from natural sources of pollution (11.2~14.42%). The PMF model was easily affected by outliers and its fitting degree was not ideal, leading to be unable to get more accurate results of source analysis. The combination of multiple models could effectively improve the accuracy of pollution source analysis of soil heavy metals. These results provide some scientific basis for further remediation of heavy metal pollution in farmland soil.

20.
Environ Sci Process Impacts ; 25(3): 507-518, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36606575

RESUMEN

Pharmaceutical factories produce a large amount of volatile organic compounds (VOCs), which may pose a potential health threat to the environment, workers, and nearby residents. Sampling points were set up in the tylosin biological fermentation workshop (FW) and sewage treatment station (STS) of a pharmaceutical factory in a central city in northern China to collect VOCs and study their generation characteristics and diffusion. The results indicated that with the increase in fermentation time, VOC production decreased gradually, and the decline was rapid. The main VOCs produced by the FW are oxygen-containing organics and nitrogen-containing organics including 1-heptyladehyde (8.86 × 102 mg m-3), 1-methyl-2-pyrrolidone (6.36 × 102 mg m-3) and benzene (5.85 × 102 mg m-3). The STS mainly produces nitrogen-containing organics and oxygen-containing organics including 1-methyl-2-pyrrolidone (3.38 × 103 mg m-3), diethyl amine (9.60 × 102 mg m-3) and methyl ethyl ketone (2.98 × 102 mg m-3). VOCs produced by biopharmaceutical factories can diffuse for a long distance in the atmosphere. The highest concentration of chlorinated organic compounds can spread to 11.43 kilometers in the horizontal direction and 3 kilometers in the vertical direction. Acetaldehyde, butyraldehyde, diethylamine, butyl acetate and methyl ethyl ketone are odorous gases detected in the FW and STS, respectively. Benzene, carbon tetrachloride and acetaldehyde are the main carcinogenic VOCs produced in the fermentation process of tylosin. The research elucidated production characteristics, diffusion and health risks of VOCs in the FW, which provided a reference for the control of VOCs.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Humanos , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente , Benceno/análisis , Fermentación , Tilosina , Oxígeno , Preparaciones Farmacéuticas , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...